
The Delayed Coupling Method: An Algorithm for Solving Banded Diagonal
Matrix Problems in Parallel

N. Mattor, T. J. Williams, D. W. Hewett, A. M. Dimits
Lawrence Livermore National Laboratory

Livermore, California 94550 USA
e–mail: mattor@m5.llnl.gov

ABSTRACT

We present a new algorithm for solving banded diagonal matrix problems efficiently on distributed–
memory parallel computers, designed originally for use in dynamic alternating–direction implicit
(ADI) partial differential equation solvers. The algorithm optimizes efficiency with respect to the
number of numerical operations, and with respect to the amount of interprocessor communication.
We refer to our approach as the “delayed coupling method” because the communication isdeferred
until needed. We focus here on tridiagonal and periodic tridiagonal systems.

1. INTRODUCTION

We discuss a new approach to parallel solution of banded linear systems, the “delayed coupling
method.” The method is analogous to the solution of an inhomogeneous linear differential equation,
where the solution is a “particular” solution added to an arbitrary linear combination of “homoge-
neous” solutions. The coefficients of the homogeneous solutions are later determined by boundary
conditions. In our parallel method, each processor is given a contiguous subsection of a tridiagonal
system. With no information about the neighboring subsystems, each processor obtains the solution
up to two constants. Then the global solution can be found by matching endpoints.

Our earlier paper[1] has a more detailed description of the method and its application to tridiagonal
systems. The algorithm is designed with the following objectives, listed in order of priority. The first
objective is to minimize the number of interprocessor communications opened, since this is the most
time consuming process. Second, the algorithm allows flexibility of the specific solution method
of the tridiagonal submatrices. Here, we employ a variant of LU decomposition, but this is easily
replaced with cyclic reduction or other. Third, we wish to minimize storageneeds.

2. BASIC ALGORITHM

We consider theN �N tridiagonal linear system�X = R; (1)

with � = 0BBBBBBBB@ B1 C1A2 B2 C2: : :: : :: : CN�1AN BN
1CCCCCCCCA ;

X = (X1 X2 : : : XN)T ;R = (R1 R2 : : : RN)T ;

on a parallel computer withP processors. For simplicity, we assumeN = PM , withM an integer.

Our algorithm is as follows. First, we divide the linear system of orderN intoP subsystems of orderM . Thus, theN �N matrix� is divided intoP submatricesLp, each of dimensionM �M ,

� = 0BBBBBBBB@ L1 c1MeMeT1a21e1eTM L2 c2MeMeT1: : :: : :: : cP�1M eMeT1aP1 e1eTM LP
1CCCCCCCCA ;

whereep is thepth column of theM �M identity matrix. Similarly, we divide theN dimensional
vectorsX andR intoP sub–vectorsx andr, each of dimensionMX = � x1 x2 : : : xP �T ;R = � r1 r2 : : : rP �T :
For each subsystemp we define three vectorsxRp , xUHp , andxLHp as the solutions to the equationsLpxRp � rp; (2)LpxUHp � (�ap1 0 0 : : : 0)T ; (3)LpxLHp � (0 0 0 : : : �cpM)T : (4)

The superscripts on thex stand for “particular,” “upper homogeneous,” and “lower homogeneous”
solution respectively, from the inhomogeneous differential equation analogy. Hereapm is themth
subdiagonal element of thepth submatrix,etc.

The general solution of subsystemp is xRp plus an arbitrary linear combination ofxUHp andxLHp ,xp = xRp + �UHp xUHp + �LHp xLHp ; (5)

where�UHp and�LHp are yet undetermined coefficients that depend on coupling to the neighboring
solutions. To find�UHp and�LH, substitute Eq. (5) into Eq. (1). Straightforward calculation shows
that �UH1 = �LHP = 0, and the remaining2P � 2 coefficients are determined by the solution to the
following tridiagonal linear system, or “reduced” system:0BBBBBBBBBBBBBBBB@

xLH1;M �1�1 xUH2;1 xLH2;1xUH2;M xLH2;M �1�1 xUH3;1 xLH3;1xUH3;M xLH3;M �1: : :: : :: : �1�1 xUHP;1
1CCCCCCCCCCCCCCCCA
0BBBBBBBBBBBBBBB@

�LH1�UH2�LH2�UH3�LH3::�LHP�1�UHP
1CCCCCCCCCCCCCCCA = �

0BBBBBBBBBBBBBBBB@
xR1;MxR2;1xR2;MxR3;1xR3;M::xRP�1;MxRP;M

1CCCCCCCCCCCCCCCCA ; (6)

wherexp;m refers to themth element of the appropriate solution from thepth submatrix.

3. COMPUTING THE PARTICULAR AND HOMOGENEOUS SOLUTIONS

We find the three solutionsxRp , xUHp , andxLHp by solving Eqs. (2)-(4). Exploiting overlapping cal-
culations and elements with value0 gives the following algorithm, with13M binary floating point
operations:

Forward elimination:!1 = c1b1 !i = cibi � ai!i�1 i = 2; 3; : : :M1 = r1b1 i = ri � aii�1bi � ai!i�1 i = 2; 3; : : :M
Back substitution:xRM = M xRi = i � !ixRi+1 i = M � 1;M � 2; : : : 1xLHM = �!M xLHi = �!ixLHi+1 i = M � 1;M � 2; : : : 1!UHM = aMbM !UHi = aibi � ci!UHi+1 i =M � 1;M � 2; : : : 1
Forward substitution:xUH1 = �!UH1 xUHi = �!UHi xUHi�1 i = 2; 3; : : :M;
where the processor indexp is implicitly present on all variables, and end elementsa1 andcM are
written in the appropriate positions in thea andc arrays. The sample code in ref. [1] implements this
with no temporary storage arrays.

4. CONSTRUCTION AND SOLUTION OF THE REDUCED MATRIX

Once each processor has determinedxRp , xUHp , andxLHp , we construct and solve the reduced system
of Eq. (6). We assume that the following functions are available for interprocessor communication:� Send(ToPid,data,n): When invoked by processorFromPid, the arraydata of length

n is sent to processorToPid. Send() is nonblocking.� Receive(FromPid,data,n): To complete data transmission, processorToPid invokes
Receive(). Upon execution, the array sent by processorFromPid is stored in the array
data array of lengthn. Receive() is blocking (the processor waits for the data to be re-
ceived before continuing).

Opening interprocessor communications is generally the most time–consuming step in the entire tridi-
agonal solution process, so it is important to minimize this. The following algorithm consumes a time
of T = (log2 P)tc in opening communication channels (wheretc is the time to open one channel).

1. Each processor writes whatever data it has that is relevant to Eq. (6) inthe arrayOutData.

2. TheOutData arrays from each processor are concatenated as follows (Fig. 1):

(a) Each processorp sends itsOutData array to processorp � 1 (mod P), and re-
ceives a corresponding array from processorp+1 (mod P), as depicted in Fig. 1a.
The incoming array is concatenated to the end ofOutData.

(b) At theith step, repeat the first step, except sending to processorp� 2i�1 (mod P),
and receiving from processorp+2i�1 (mod P) (Fig. 1b,c), fori = 1; 2; : : :. Afterlog2 P iterations (or the next higher integer), each processor has the contents of the
reduced matrix in theOutData array.

3. Each processor rearranges the contents of itsOutData array into a local copy of the reduced
tridiagonal system, and then solves. At this point, each processor has all the values in Eq. (5)
stored locally.

Step 1
1 2 3 4 51 2 3 4 5

1 2 3 4 5

1 2 3 4 5

OutData contents

Data flow

OutData contents

Data flow

OutData contents

Data flow

OutData contents

Data flowStep 2

Step 3

(1,2) (2,3) (3,4) (4,5) (5,1)

(1-4) (2-5) (3-5,1) (4,5,1,2) (5,1-3)

(1-5) (2-5,1) (4,5,1-3) (5,1-4)(3-5,1,2)

Figure 1:Illustration of the method to pass reduced matrix data between processors, shown forP = 5.

5. PERFORMANCE

The time consumption for this routine is as follows:

1. To calculate the three rootsxR, xUH , andxLH requires13M binary floating point operations
by each processor, done in parallel.

2. To assemble the reduced matrix in each processor requireslog2 P steps where interprocessor
communications are opened, and theith opening passes8� 2i�1 real numbers.

3. Solution of the reduced system through LU decomposition requires8 (2P � 2) binary floating
point operations by each processor, done in parallel.

4. Calculation of the final solution requires4M binary floating point operations by each processor,
done in parallel.

If tb is the time of one binary floating point operation,tc is the time required to open a communication
channel (latency), andtp is the time to pass one real number once communication is opened, then the
time to execute this parallel routine is given by (optimally)TP ' 13Mtb + (log2 P) tc + 8 (P � 1) tp + 8 (2P � 2) tb + 4Mtb' (17M + 16P) tb + (log2 P) tc + 8Ptp; (7)

for P � 1. For cases of present interest,TP is dominated by(log2 P)tc and17Mtb. Theparallel
efficiencyis defined by�P � TSPTP , whereTS is the execution time of a serial code which solves by
LU decomposition. Serial LU decomposition solves anN �N system in a timeTS = 8Ntb, so�P = 817 + 16P 2=N + (log2 P)Ptc=Ntb + 8P 2tp=Ntb : (8)

To test these claims empirically, we measured the execution times ofworking serial and parallel codes,
and calculated�P both through its definition and through Eq. (8). Fig. 2 shows�P as a function ofP for two cases,N = 200 andN = 50; 000. We conclude from Fig. 2 that Eq. (8) (smooth lines)
is reasonably accurate, both for the theoretical maximum efficiency (47%, achieved for smallP and
largeN) and for the scaling with largeP .

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

P

ε P

N = 50000

N = 200

Figure 2: Results of scaling runs, comparing the parallel time with serial LU decomposition time.
Here, �P is the parallel efficiency andP is the number of processors. The smooth lines represent
Eq. (8), and the points are empirical results.

We made these timings on the BBN TC2000 machine at Lawrence Livermore NationalLaboratory,
using 64-bit floating point arithmetic. This machine had 128 M88100 RISC processors, connected by
a butterfly–switch network. To calculate the predictions of Eq. (7) we chosetc = 750�sec, based on
the average time of a send/receive pair measured in our code; based on other measurements, we chose
the passage time of a single 64-bit real number astp = 9�sec; we chosetb = 1:4�sec, based on our
measured timing of 0.00218 sec for the serial algorithm on theN = 200 case.

6. PERIODIC TRIDIAGONAL SYSTEM

We have generalized our algorithm to a “periodic tridiagonal system.” This is a tridiagonal system
with additional nonzero elements in the far upper and lower corners of the matrix,that is, Eq. (1) with� now of the form � = 0BBBBBBBB@ B1 C1 A1A2 B2 C2: : :: : :: : CN�1CN AN BN

1CCCCCCCCA : (9)

Solution proceeds almost precisely as before. First divide Equation (9) into tridiagonal subsystems,
and solve for the particular, upper, and lower homogeneous solutions. The subsystems areagain all
tridiagonal, so no additional consideration need be given to this part. Then use these solutions to
construct a reduced system analogous to Eq. (6). Here, however, the first and last subsystems acquire
drives for the upper and lower homogeneous solutions, respectively, so the condition�UH1 = �UHP = 0

no longer pertains. This leads to a reduced matrix with nonzero elements in thefar corners0BBBBBBBBBBBBBBBB@
xLH1;M �1�1 xUH2;1 xLH2;1 xUH1;MxUH2;M xLH2;M �1�1 xUH3;1 xLH3;1xUH3;M xLH3;M �1: : :: : :: : �1xLHP;1 �1 xUHP;1

1CCCCCCCCCCCCCCCCA
0BBBBBBBBBBBBBBB@

�LH1�UH2�LH2�UH3�LH3::�LHP�1�UHP
1CCCCCCCCCCCCCCCA = �

0BBBBBBBBBBBBBBBB@
xR1;MxR2;1xR2;MxR3;1xR3;M::xRP�1;MxRP;M

1CCCCCCCCCCCCCCCCA :
This system necessitates a new solution algorithm. The most efficient we know (not shown here)
usesLU decomposition, and requires15P binary operations. The interesting consequence is that
the parallel efficiency nearly doubles over the nonperiodic case, since the operation count in the
corresponding serial solver also rises—from8N to 15N . Thus, Eq. (8) for the predicted efficiency
becomes �P = 1517 + 16P 2=N + (log2 P)Ptc=Ntb + 15P 2tp=Ntb :

7. DISCUSSION AND CONCLUSIONS

Stability of the parallel tridiagonal algorithm is similar to that of serial LU decomposition of a tridi-
agonal matrix. If theLi are unstable to LU decomposition, then pivoting could be used. If theLi are
singular, then LU decomposition fails and some alternative should be devised. If the large matrix� is
diagonally dominant, then so too are theLi. If the reduced system is unstable to LU decomposition,
this can be replaced by a different solution scheme, with little loss of overall speed (ifP �M).

This routine is generalizable from tridiagonal to higher systems. For example, ina 5-diagonal system,
there would be four homogeneous solutions, each with an undetermined coefficient. The coefficients
of the homogeneous solutions would be determined by a reduced system analogous to Eq. (6), except
with O(4P) equations, not2P � 2.

In our applications of the parallel tridiagonal solver we solve a tridiagonal system along each line of
grid points parallel to a given direction. In two or higher dimensions, each processor owns a segment
of each of many systems, giving us a strong advantage in interprocessor communication over solving
only a single system: each processor solvesall of its triplets of independent subsystems, then packs
together all of the data it needs to send to other processors—there is only one send volley for solving
all of the systems. Furthermore, that number of processors each processor communicates with is the
number of processors collinear in the one direction, which will generally be smaller than the total
number of processors in a multidimensional domain decomposition; this improves parallel efficiency
by reducing the value ofP below the total number of processors.

This work was performed for the U.S. Department of Energy at Lawrence Livermore National Laboratory under
contract W–7405–ENG–48 and Los Alamos National Laboratoryunder contract W–7405–ENG–36.

REFERENCES

[1] N. Mattor, T. J. Williams, D. W. Hewett,Algorithm for solving tridiagonal matrix problems in
parallel, Parallel Computing 25, p. 1769 (1995).

[2] R. W. Hockney and J. W. Eastwood,Computer Simulation Using Particles, Adam Hilger, Bristol,
p. 185 (1988).

